UNSW CompCogSci
Menu
Learning Statistics with R
In 2011, I (Dani) started teaching the introductory statistics class for psychology students offered at the University of Adelaide, using the R statistical package as the primary tool. I wrote my own lecture notes for the class, which have now expanded to the point of effectively being a book  it's still a work in progress, but it has reached a "first draft" stage. You can download the current version from this page, and you can purchase a copy from Lulu, a printondemand service, so that students can obtain hard copies at a much lower price than a traditional academic publisher would charge. The book is available here:
The book is associated with the lsr package, available on CRAN and github. The data sets analysed in the book can be downloaded here, and the source files for the book are here. 
Table of Contents
Part 1: Background
 Chapter 1: Why do we learn statistics? Psychology and statistics. Statistics in everyday life. Some examples where intuition is misleading, and statistics is critical.
 Chapter 2: A brief introduction to research design. Basics of psychological measurement. Reliability and validity of a measurement. Experimental and nonexperimental design. Predictors versus outcomes.
Part 2: An Introduction to R
 Chapter 3: Getting started with R. Getting R and Rstudio. Typing commands at the console. Simple calculations. Using functions. Introduction to variables. Numeric, character and logical data. Storing multiple values asa vector.
 Chapter 4: Additional R concepts. Installing and loading packages. The workspace. Navigating the file system. More complicated data structures: factors, data frames, lists and formulas. A brief discussion of generic functions.
Part 3: Working with Data
 Chapter 5: Descriptive statistics. Mean, median and mode. Range, interquartile range and standard deviations. Skew and kurtosis. Standard scores. Correlations. Tools for computing these things in R. Brief comments missing data.
 Chapter 6: Drawing graphs. Discussion of R graphics. Histograms. Stem and leaf plots. Boxplots. Scatterplots. Bar graphs.
 Chapter 7: Pragmatic matters. Tabulating data. Transforming a variable. Subsetting vectors and data frames. Sorting, transposing and merging data. Reshaping a data frame. Basics of text processing. Reading unusual data files. Basics of variable coercion. Even more data structures. Other miscellaneous topics, including floating point arithmetic.
 Chapter 8: Basic programming. Scripts. Loops. Conditionals. Writing functions. Implicit loops.
Part 4: Statistical Theory
 Prelude. The riddle of induction, and why statisticians make assumptions.
 Chapter 9: Introduction to probability. Probability versus statistics. Basics of probability theory. Common distributions: normal, binomial, t, chisquare, F. Bayesian versus frequentist probability.
 Chapter 10: Estimating unknown quantities from a sample. Sampling from populations. Estimating population means and standard deviations. Sampling distributions. The central limit theorem. Confidence intervals.
 Chapter 11: Hypothesis testing. Research hypotheses versus statistical hypotheses. Null versus alternative hypotheses. Type I and Type II errors. Sampling distributions for test statistics. Hypothesis testing as decision making. pvalues. Reporting the results of a test. Effect size and power. Controversies and traps in hypothesis testing.
Part 5: Statistical Tools
 Chapter 12: Categorical data analysis. Chisquare goodness of fit test. Chisquare test of independence. Yate's continuity correction. Effect size with Cramer's V. Assumptions of the tests. Other tests: Fisher exact test and McNemar's test.
 Chapter 13: Comparing two means. One sample ztest. One sample ttest. Student's independent sample ttest. Welch's independent samples ttest. Paired sample ttest. Effect size with Cohen's d. Checking the normality assumption. Wilcoxon tests for nonnormal data.
 Chapter 14: Comparing several means (oneway ANOVA). Introduction to oneway ANOVA. Doing it in R. Effect size with etasquared. Simple corrections for multiple comparisons (post hoc tests). Assumptions of oneway ANOVA. Checking homogeneity of variance using Levene tests. Avoiding the homogeneity of variance assumption. Checking and avoiding the normality assumption. Relationship between ANOVA and ttests.
 Chapter 15: Linear regression. Introduction to regression. Estimation by least squares. Multiple regression models. Measuring the fit of a regression model. Hypothesis tests for regression models. Standardised regression coefficient. Assumptions of regression models. Basic regression diagnostics. Model selection methods for regression.
 Chapter 16: Factorial ANOVA. Factorial ANOVA without interactions. Factorial ANOVA with interactions. Effect sizes, estimated marginal means, confidence intervals for effects. Assumption checking. Ftests as model selection. Interpreting ANOVA as a linear model. Specifying contrasts. Post hoc testing via Tukey's HSD. Factorial ANOVA with unbalanced data (Type I, III and III sums of squares)
Other Topics
 Chapter 17: Bayesian statistics. Introduction to Bayesian inference. Bayesian analysis of contingency tables. Bayesian ttests, ANOVAs and regressions.
 Chapter 18: Epilogue. Comments on the content missing from this book. Advantages to using R.
 References. Massively incomplete reference list.
Other Resources
Strictly speaking the book isn't linked to any particular lecture slides or exercises. However, I have on occasions run some brief oneday workshops at a few places, and it tends to loosely follow the book. The workshop consists of three parts, an introduction to the basic mechanics of R, followed by a fairly rapid overview of some core statistical tools in R, and some extra bits and pieces at the end:
